DESIGN REVIEW 1

SAE Aero Team

Team 508:

David Jay Michael Nalovic Sofia Rodriguez Tristan Wahl

Team 508:

David Jay Michael Nalovic Sofia Rodriguez Tristan Wahl

Meet Team 508

David Jay Manufacturing Engineer

Michael Nalovic Controls Engineer

Sofia Rodriguez
Aeronautics
Engineer

Tristan Wahl Flight Design Engineer

Sponsor and Advisor

Florida Space Grant Consortium

Dr. Yousuf Ali
Teaching Faculty II

Project Objective

SAE Aero Design

- Design and manufacture a 3D printed remote control airplane within the rules of the SAE Aero Design Competition - Regular Class
- Designed to present real world challenges involved in the creation of an aircraft

FAMU-FSU Aeronautics Approach

Aeronautics

- Subsection of the SAE Aero Team.
- Differs from Fuselage team in that the primary focus is airfoil design and control surface integration.
- Research and application of physics based aeronautical principles to ensure a stable and successful flight.

Project Objective

Creation

To design, fabricate and test a radio-controlled aircraft that can carry a specified payload.

Innovation

To center conceptualization around successful implementation of cutting-edge engineering techniques

- 3D printed lightweight PLA
- Advanced forms of structural securitization

Participation

To ensure that all competition guidelines are met in order to successfully compete. Including but not limited to:

- Weight
- Wingspan limit
- Material restrictions

Key Goals

Securely hold the payload designated by SAE

Coordinate and
Communicate
with the Fuselage
Team

Design and
Create
Control Systems

Design Plane using Innovation

Testing through
Aerodynamic
Validation

Customer Needs

Past Competitions

Figure 1: 2018-2019 Competition

Figure 2: 2020-2021 Competition

2019-2020 Competition

Figure 3: 2019-2020 Competition

Mission Profile

- 0. Mission begins with payload on board
- 1. Takeoff in less than 100ft
- 2. Climb to safe altitude

3. Loop back around for landing approach (after 400ft)

5. Land on same runway

6. Unload payload in under 1 minute

4

Plane Control Surfaces

Rudder: Change Yaw (Side to Side)

Elevator: Change Pitch (Up and Down)

Aileron: Change Roll

Major Functions

Major Functions

Move Down Runway

Overcome Drag

Accelerate

Enable Lift

Absorb Shock

Load and Unload Payload

Flight Controls (Yaw, Pitch, and Roll)

Prototypes

Figure 4: Prototype "Guppy"

Figure 5: Prototype "Dolphin"

Figure 6: Prototype "Dolphin 2.0"

Cirrus SR22

Eppler E423 Airfoil Design

Future Work

Future Work

Figure 7: Empennage with Control Surfaces

Figure 8: Various Winglet and Wingtip Designs

References

• Dr. McConomy, S. (2021). Customer Needs.

"2022 SAE Aero Design Rules." *SAE Aero Design*, www.saeaerodesign.com/cdsweb/gen/DocumentResources.aspx.

http://airfoiltools.com/airfoil/details?airfoil=e423-il